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The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann
method (FDLBM) are quite recent approaches for simulating fluid flow, which have been
proven as valid and efficient tools in a variety of complex flow problems. They are considered
attractive alternatives to conventional finite-difference schemes because they recover the
Navier-Stokes equations and are computationally more stable, and easily parallelizable.
However, most models of the LBM or FDLBM are for incompressible fluids because of the
simplicity of the structure of the model. Although some models for compressible thermal fluids
have been introduced, these models are for monatomic gases, and suffer from the instability in
calculations. A lattice BGK model based on a finite difference scheme with an internal degree
of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated.
In this research we present a 2-dimensional edge tone to predict the frequency characteristics of
discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio
¥ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity
profile of a jet at the outlet, and the edge is of an angle of @=23°. At a stand-off distance w,
the edge is inserted along the centerline of the jet, and a sinuous instability wave with real
frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards
the downstream. We have succeeded in capturing very small pressure fluctuations resulting from
periodic oscillation of the jet around the edge.
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or lattice gas cellular automaton, LGCA) (Wol-
fram, 1986) model, the lattice Boltmann method
(LBM) (Alexander et al., 1993 ; Chen & Doolen,
1998 ; Tsutahara et al., 1999) is a quite recent

1. Introduction

Developed from the lattice gas automata (LGA

- approach for simulating fluid flow, which has
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been proven to be a valid and efficient tool in a
variety of complex flow problems. In traditional
numerical methods, the macroscopic variables,
velocity and density, are obtained by solving the
Navier-Stokes equations. The lattice Boltzmann
method, however, solves the microscopic kinetic
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equation for particle distribution function from
which the particles move at unit speed on a re-
gular grid subject to particle movement and sim-
plified collision rules, which conserve the total
fluid mass, momentum and energy. The presently
popular method uses regularly spaced lattices and
is difficult to handle curved boundaries with
desirable flexibility. To circumvent such difficult-
ies, the finite difference-based lattice Boltzmann
method (FDLBM) (Cao et al., 1997) and the fi-
nite volume-based lattice Boltzmann method
(FVLBM) (Peng et al., 1999) in curvilinear coor-
dinates are applied using body-fitted coordina-
tes with non-uniform grids. Especially, FDLBM
makes it possible and easy to simulate complicat-
ed object shapes, and the applications to various
flow fields are attained. This method has high
flexibility for coordinate system selection and is
often the choice among various schemes.

However, most models in LBM or convention-
al FDLBM are incompressible fluids because
of the simplicity of the structure of the model.
Although some models for compressible thermal
fluids have been introduced, these models are for
monatomic gases, and suffer from the instability
in calculation.

In the present work, in order to apply the finite
difference lattice Boltzmann model to simulate
such as diatomic gases, air, etc., a lattice BGK mo-
del with an internal degree of freedom, which was
introduced to the LBM by Takada & Tsutahara
(1999), is employed to predict a speed of sound.
Then, we simulate the modified model to the
onset issue for an edgetone generated by a two-
dimensional jet impinging on a wedge to predict
frequency characteristics of the discrete oscilla-
tion of a jet-edge feedback cycle. As a result, the
model with an internal degree of freedom can be
easily used to simulate complex fluid flows and
associated transport phenomena such as aero-
acustics.

2. Computational Methodology

2.1 Finite difference lattice Boltzmann mo-
del with internal degree of freedom
The Boltzmann equation governing the velocity
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distribution function f; may be written, with sin-
gle relaxation time ¢, as:

of: I
ot +ci°vfi_ ¢<f1 [ ) (1)

Here, the real number f; is the normalized num-

ber of particles at each lattice node and time £,
moving direction 7. Furthermore, to apply for
high Reynolds number and speed up the calcula-
tion time, the modified equation (Kang et al.,
2002) in which the third term is added to the
discretized BGK equation (Eq.(1)) is transform-
ed as:

%);i +Ci‘Vfi_ACi‘fi%¢fieq: _% (fi_fieq) (2)

in which A(>0) is a constant, and other varia-

bles are the same as in Eq.(1).

When the energy equation is derived from Eq.
(2), the ratio of specific heats y in BGK model
is expressed by the degree of freedom of the par-
ticle motion, which, in this conventional model,
corresponds to the dimensional number D, as:

y=(D+2)/D (3)

It is well known that the degree of freedom coin-
cides with the dimension, and in a two-dimen-
sional case y=2 and in a three-dimensional case
y=1.67 for monatomic gases, respectively, which
are unrealistic. Therefore, in order to simulate
realistic gases in two-dimension or three-dimen-
sion cases for diatomic gases, an additional inter-
nal degree of freedom should be considered.

To begin with, we apply the model having
energy modes except the translation G;(x, f) =
fi(x, t) E:(x, t) to give the particle internal de-
gree of freedom, which was proposed by Takada
& Tsutahara (1999) in LBM. The distribution
function G;(x, t) is assumed to approach by col-
lisions to its local equilibrium state G¢?(x, ¢) as
the particle distribution functions do, and the
evolution of G;(x, ¢) is transformed as follows.

aaGi +Ci'VGi_ACi'M
t
1

¢
:_E (Gi_Gieq>

Here, assumed that all the particles at the local

(4)
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equilibrium stage have the same rotational energy

as .
GEr=Efe (5)
_D/D+2
E‘T( D 7>e' (6)

Here e is internal energy, and the specific heat
ratio y can be variable to 1.0< y<2.0. Up to O
(u*), we assume that the equilibrium distribution

function /£ in Eq. (5) is expressed as,

fieq:Fip[l_ZB(Ci' u) +2B*(e:
—4/3B%(¢i w)*—2B*(cs+

u)?+B(uu)
u) (u-u)]

in which the subscript 7 refers to the kind of
particles and B is represented by B=—1/2(y—
1) e. In a two-dimensional 21-speed particle mo-
del (D2Q21), the velocity of the particles is de-
termined by :

(7)

m(i—1) i7r(z'—1)>

2 ' 4 ’
(=1  x(—1) (8)
Sm< 2 4 ﬂ

(1=1, -, 4, m=1, 2, k=1, 2, --+)

ci=kJ/mc [cos(

2.2 Macroscopic variables

The form of RHS term, given in Eq. (4), re-
presents a relaxation of the distribution towards
its equilibrium value and recovers the nonlinear
form of the fluid, ensuring that the fully nonlinear
Navier-Stokes equation is satisfied. The equilib-
rium distribution function ff? depends on the
fluid density o, velocity u, and internal energy e,
at each site which can be calculated from the
distribution functions as :

o=2fi=2ff 9)
pu:gciﬂzgcifﬁ"

%puz—i—pe:;(%c?ﬁ--}-&) -
=5(L e+ o) .

The pressure, the second viscosity and the con-
ductivity of internal energy are given, respectively,
by :

Copyright (C) 2005 NuriMedia Co.,

Hokeun Kang and Eunra Kim

p=(r—1)pe (12)
p=(y—1)pe(¢p—A) (13)
A=—(y—1?pe(p—A)=—(y—Dp (14)
k=ype(p—A) (15)

and the speed of sound c¢s is also defined by

cs=,/ v -=Jr(y—1le (16)
The transfer coefficients, the speed of sound, and
the equation of the equilibrium energy show that
the model applied is consistent with the conven-
tional model in which only the translation mode
of the energy is considered. Moreover, this model
considers the additional degrees of freedom of
energy by Eq. (5) without changing the evolution
equation of f£7; therefore it is very simple task
to add the degree of freedom. The transfer coeffi-
cients, the speed of sound, and the equilibrium
rotation energy are given by the same expressions
in any models other than D2Q21 or models of
other lattice shapes or those of other local equi-
librium distribution functions f£9.

Until now, G{?=Eff? in Eq. (4) has been
treated as a distribution function of the rotation
energy, however it can be defined as a distribution
function of any other kinetic energy. For instance,
the degree of freedom is limited to the number of
the dimension and it can be considered as the ad-
ditional modes of translation energy for one- and
two-dimensional space. In other words, it can be
understood as the distribution functions of any
energy modes including translation that cannot be
expressed by the conventional FDLB models.

3. Some results and Discussion

3.1 Sound speed

The speed of sound simulated by the model
applied above is also compared to the theoretical
(16) and the conventional FDLB
model with 21 velocities. In Fig. 1, it is seen that

value in Eq.

the speed of sound calculated for the specific heats
y=14, y=1.67 and y=2.0 agree well with the
theoretical values and the conventional FDLB
model for various internal energies.
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Fig. 1 Speed of Sound for various specific heats

3.2 [Edgetone

In the edge tone, a discrete frequency sound is
produced by several flow geometries in which a
free shear layer interacts with a solid boundary.
One well-known device which produces discrete
frequency sound in this way is the edge tone. Its
sound is generated because the impinging jet
forms a self-excited flow, maintained by a feed-
back loop. Particularly obvious are the main fea-
tures by the simplifying considerations first stated
by Powell (1961). This edgetone is an effective
device for transforming the energy of the jet into
acoustic radiation at a discrete frequency, and it is
used as the source, which is coupled to a resona-
tor in several wind instruments. Since the last
century, the edgetone has been the subject of a
large number of both experimental and theo-
retical investigations. Some books and reviews on
edgetones are found in this field (Holger et al.,
1977 ; Ohring, 1988 ; Crighton, 1992, Bamberger
et al., 2004).

3.2.1 Numerical conditions

The dimension of the edgetone is shown in
Fig. 2 and all the length scales are normalized
by the width of nozzle d in the computation.
Flows are assumed to be laminar with the same
incoming velocity. For the hydrodynamic and
flow-induced noise calculations, a computational
domain is set for 0<x <1454 and 0<y<240d
(301 X301 mesh cells), and the edge is an angle
of @=23°. For spatial derivatives, a third-order-
accurate up-wind scheme (second order accurate

10d | 6d | 8.5d 120 .54
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119 54
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Fig. 2 Edgetone geometry

at the boundary) is employed and a second-
order-accurate Runge-Kutta scehme is used for
time integration. Adiabatic and no-slip condi-
tions are employed on the wedge and walls, and
an outflow condition is imposed on the outer far
field boundary. Computations start with a uni-
form velocity u,(T (=Ut/d)=0)= (U, 0) at
the nozzle inlet.

3.2.2 Edgetones involving feedback

The results of FDLBM, adaptive finite element
method and experiment (Bamberger et al., 2004)
for various inlet velocities (zz=3.38 m/s~15m/s
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Fig. 3 Comparison of S; of the frequency for

FDLBM, FEM and Experiment (Bamber
et al., 2004)
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or M=0.026~0.041, y=1.4) at the nozzle with
the Strouhal number S;(=fd/u) are shown in
Fig. 3. A comparison for inlet velocities indica-
tes that the FDLBM with an internal degree of
freedom is qualitatively compatible with those of
FEM and experiment.

In the near-field flow structure, streamlines at
three different instants are presented in Fig. 4 for
the case of #=14m/s (M=0.041) and y=14.
Here, a jet which comes out of the nozzle first
collides with the edge since a uniform flow as the
initial condition without a turbulence is given,
and the jet equally divided itself into the upper

(¢) T(=Ut/d) =164
Fig. 4 Streamlines for three difference instants at
u=14m/s (M=0.041) and y=1.4
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and lower sides of the wedge as shown in Fig. 4
(a). Then, the jet begins to fluctuate, colliding
with the edge. It fluctuates upward and down-
ward periodically. This fluctuation synchronizes
with the period of the vortex, which arises from
the top and bottom wall in the vicinity of the
nozzle exit. It is considered that, because of the
vortex, the fluctuation of the jet is induced. Then
with the effect of the jet, the vortex moves toward
downstream, and it undulates like the form of
the jet by the rotation energy. As a result, the jet
changes its direction due to the rotation of the
vortex in the vicinity where the vortex exceeded
the tip of the wedge, and flows into unilateral
sides of the wedge, as shown in Figs. 4(b) and
4(c).

Owing to the fluctuation of this jet as shown in
Fig. 4, the pressure on the side exposed to the jet
increases (Fig. 5(b)) but, on the opposite side,
the pressure decreases (Fig. 5(a)) periodically. In
other words, the edgetone is generated because the
impinging jet forms a self-excited flow maintain-
ed by a feedback loop. As a result, on the upper
and lower parts of the edge, the pressure wave
with an opposite phase is generated. It is shown
that the maximum pressure pmax and minimum
pressure pmin have been observed to be pmax=
0.0005 and pmin=—0.0004, respectively, at the
vicinity of the edge as has been examined by
Kayayoglu and Rockwell (1986). This feature is
to be explained by the antisymmetry of the down-
stream disturbance about the central surface of
jet. Vortices in the jet impinge on the surface of
the wedge to produce a surface-pressure fluctua-
tion, which propagates upstream at the speed of
sound to the nozzle. At the outlet of the nozzle,
this pressure fluctuation produces vorticity fluc-
tuations in the shear layers of the jet, modifying
the rolling up of the shear layers due to the in-
stability. During the two periods, edge vortices
are observed above and below the edge, being
180° out of phase to each other. In the figures, the
vortex is below the edge during the downward
movement of the jet. In other words, the vortices
in the shear layer impinge on the downstream
edge and induce large pressure oscillations, which
become the major noise sources. At certain con-
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Fig. 5 Pressure distribution at two different instants

ditions periodic movement due to positive feed-
back mechanism occurs, and it creates audible
acoustic pressure. In addition, since the sound
radiation by the edge is proportional to the sur-
face pressure, the maximum pressure point can be
regarded as the effective source point, though the
exact point can be somewhat different depending
on the radiating direction.

Figure 6 shows a phase diagram u; (x2, 0.6d)
versus 2 (x1, 0.6d) with xz a point w/5 left of
x1. Here, we analyzed the temporal behavior of
a typical quantity of flow at a fixed position x;
after computing for a sufficiently large number of
periods. Here, we used x1, a point w/5 left and
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Fig. 6 Phase diagram u;(x2, 0.6d) versus u(xi,

0.6d) with x2 a point w/5 left of x; at u=
12.25m/s

slightly above the edge of the labium. For quan-
tity we chose the horizontal velocity component
u1(x1, 0.6d) at x1, and it certainly demonstrates
the periodic behavior of the flow.

The time variations of the acoustic pressure at
2 points in calculating area are shown in Fig. 7
for the case of M =0.036(=12.25m/s) and 0.041
(=14 m/s), respectively. The observation points
are radically considered on the edge tip (xo, Vo),
in which these points apart from (1094, £100d)
in the x and y direction, respectively. The solid
line is the upper side of the wedge, and the dot-
ted one is the lower side of the wedge, and the
sound signals fluctuate with a period of AT (=
Ut/d) =20.48 and 19.88, which corresponds to
S.(=fd/U) =0.049 and 0.051, respectively. More-
over, it can be confirmed that the amplitude of
the fluctuations of the acoustic pressure in the
points is about 0.00006, and it has a more minute
value than the pressure fluctuation at the vicinity
of the edge with 0.0009.

In case of M =0.2(=64m/s), Fig. 8 shows the
acoustic pressure field for three different instants
(T=Ut/d=260 and 268), where the contour
level Apsiep fluctuates from —0.001 to 0.002. We
can see in the figure, the positive and negative
acoustic pressure propagates symmetrically in the
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Fig. 8 Acoustic pressure field at //=0.2(=68 m/s)
and y=1.4

upper and lower parts of the wedge alternately.

4. Conclusions

Direct simulation of flow-induced noise is ap-
proached by applying the finite difference-based
lattice Boltzmann method with an internal degree
of freedom, which was introduced by Ref. (1999)
in LBM. The present method correctly predicts

Hokeun Kang and Eunra Kim

the frequency characteristics of the discrete oscil-
lation of a jet-edge feedback cycle for various
inflow velocities (2=3.38 m/s~15m/s or M=
0.026~0.041, y=1.4 and ¥=68 m/s or M =0.2).
We have succeeded in capturing very small pres-
sure fluctuations resulting from periodically oscil-
lation of jets around the edge with an angle of
a=23". Tts interaction with the edge produces an
irrotational feedback field which, near the nozzle
exit, is a periodic transverse flow.
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